

DALI-PWM LED RGB controller SDL-11

unction box

Ø60	۸
	1
(\mathbf{U})	l it
Ľ	

Mounting indoor only

The SDL-11 controller is a LED RGB controller designed to operate in lighting installations by means of DALI protocol (Digital Addressable Lighting Interface). The controller operates as a SLAVE device in a lighting installation and requires control by a MASTER controller compatible with DALI protocol. MASTER system as a software must support devices produced according to the PN-EN 62386-209 standard with the 'Primary N" type colour coding in DT8 device standard. SDL-11 is mounted in Ø60 junction boxes. The device is equipped with three transistor outputs with a maximum supply voltage 10:448 V DC allows to control the majority of available LED RGB lighting sources (LED tapes, LED modules and voltage controlled LED lighting fittings). Address programming in the SDL-11 module is possible only in the automatic mode (by means of the DALL controller). za//el

ting and

program

riata

DALI-PWM LED RGB controller

SDL-11

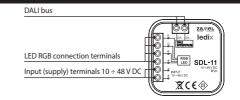
10÷48VDC ledix

Device is compatible with DALI standard.

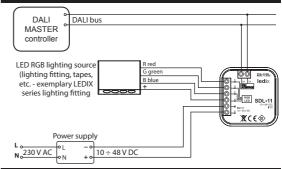
www.ledix.pl

Made in Poland

SDL-11 EN Ver. 01


DESCRIPTION

The SDL-11 controller is a LED RGB controller designed to operate in lighting installations by means of DALI protocol (Digital Addressable Lighting Interface). The controller operates as a SLAVE device in a lighting installation and requires control by a MASTER controller compatible with DALI protocol. MASTER system as a software must support devices produced according to the PN-EN 62386-209 standard with the "Primary N" type colour coding in DT8 device standard. SDL-11 is mounted in Ø60 junction boxes. The device is equipped with three transistor outputs with a maximum current load of 2,5 A operating with the PWM modulation. Wide range of nominal supply voltage 10+48 V DC allows to control the majority of available LED RGB lighting sources (LED tapes, LED modules and voltage controlled LED lighting fittings). Address programming in the SDL-11 module is possible only in the automatic mode (by means of the DALI controller). The "Primary N" standard colour coding based on the PN-EN 62386-209 standard controls directly the luminous flux intensity in each of the three output channels (R, G, B).


It is possible to adjust a required colour and to change its luminous intensity by a proper change of R, G, B parameters.

TECHNICAL DATA	
Nominal supply voltage:	10 ÷ 48 V DC
Power consumption during stand-by mode:	< 0,3 W
Number of channels:	3
Channel output element:	3 x MOSFET transistor (displays the ground)
Channel maximum current:	2,5 A
Control type:	PWM modulation
PWM control resolution:	16-bit
PWM frequency:	250 Hz
Colour coding:	"Primary N" standard consistent with EN62386-209
Device type on the bus:	8 (DT8)
Address programming:	automatic (only by means of MASTER system)
Number of terminal clamps:	8
Cross-section of connection cables:	0,2 ÷ 2,5 mm ²
Operating temperature range:	-10 ÷ +55 °C
Operation position:	free
Casing mounting:	Ø60 junction box
Casing protection degree:	IP20
Protection class:	III
Dimensions:	47,5 x 47,5 x 20 mm
Weight:	0,027 kg
Reference standard:	EN 62386-102, PN-EN 62386-209

APPEARANCE

DIAGRAM

MOUNTING

CAUTION! Connection of this device to a single-phase installation must be installed in accordance with standards valid in a particular country. Installation, connection and control should be carried out by a qualified electrician staff, who act in accordance with the service manual and the device functions.

- 1. Disconnect power supply by the phase fuse, the circuit-breaker or the switch-disconnector combined to the proper circuit.
- Check if there is no voltage on the connection cables by means of a special measuring equipment.
- 3. Install the power supply to 230 V AC.
- Connect the cables with the correct SDL-11 terminals in accordance with the installing diagram.
- 5. Mount SDL-11 in the Ø60 junction box.

6. Switch on the power supply from the mains and check if the device operates properly.

FUNCTIONING

COLOUR REPRESENTATION

For the SDL-11 controller and according to DALI standard the PWM parameter for each output is the 16-bit value. The most significant bit MSB (bits from 9 to 16) is recorded in the DTR1 register and the least significant LSB (bits from 1 to 8) in the DTR0 register of the SLD-11 device.

15							

The channel, the PWM parameter will be assigned to (written to DTR1 and DTR0 registers), is selected by entering a correct address into the DTR2 register.

Addresses assigned to channels for the SDL-11

Channel	Address	Parameter value in DTR2
R	0	0x00h
G	1	0x01h
В	2	0x02h

Addresses assigned to channels for the SDL-11 controller:

Parameter values in DTR0, DTR1, DTR2 registers	Description
DTR2 » 0x00h Channel (0) DTR1 » 0xFFh DTR2 » 0x01h Channel (1) DTR1 » 0x00h	Red colour setting (R)
DTR2 » 0x02h Channel (2) DTR1 » 0x00h	
DTR2 » 0x00h Channel (0) DTR1 » 0x00h	
DTR2 » 0x01h Channel (1) DTR1 » 0xFFh	Green colour setting (G)
DTR2 » 0x02h Channel (2) DTR1 » 0x00h	
DTR2 » 0x00h Channel (0) DTR1 » 0x00h	
DTR2 » 0x01h Channel (1) DTR1 » 0x00h	Blue colour setting (B)
DTR2 » 0x02h Channel (2) DTR1 » 0xFFh	
DTR2 » 0x00h Channel (0) DTR1 » 0xFFh	
DTR2 » 0x01h Channel (1) DTR1 » 0xFFh	White colour setting (R+G+B)
DTR2 » 0x02h Channel (2) DTR1 » 0xFFh	

LUMINOUS FLUX INTENSITY CHANGE (BRIGHTENING / DIMMING)

The luminous flux intensity in SDL-11 controllers is realised by entering correct PWM parameter values for a particular RGB controller output.

An example of luminous flux intensity change for red (R):

Parameter values in DTR0, DTR1, DTR2 registers	Description
DTR2 » 0x00h Channel (0) DTR1 » 0xFFh DTR2 » 0x01h Channel (1) DTR1 » 0x00h DTR2 » 0x02h Channel (2) DTR1 » 0x00h	Luminous flux intensity – 100% Parameter value in DTR1 register - 255 (0xFF)
DTR2 » 0x00h Channel (0) DTR1 » 0x80h DTR2 » 0x01h Channel (1) DTR1 » 0x00h DTR2 » 0x02h Channel (2) DTR1 » 0x00h	Luminous flux intensity – 50 % Parameter value in DTR1 register – 128 (0x80)
DTR2 » 0x00h Channel (0) DTR1 » 0x01h DTR2 » 0x01h Channel (1) DTR1 » 0x00h DTR2 » 0x02h Channel (2) DTR1 » 0x00h	Luminous flux intensity – 1 % Parameter value in DTR1 register – 1 (0x01)

An example of luminous flux intensity change for white:

Parameter values in DTR0, DTR1, DTR2 registers	Description
DTR2 » 0x00h Channel (0) DTR1 » 0xFFh DTR2 » 0x01h Channel (1) DTR1 » 0xFFh DTR2 » 0x02h Channel (2) DTR1 » 0xFFh	Luminous flux intensity – 100% Parameter value in DTR1 register - 255
DTR2 » 0x00h Channel (0) DTR1 » 0x80h DTR2 » 0x01h Channel (1) DTR1 » 0x80h DTR2 » 0x02h Channel (2) DTR1 » 0x80h	Luminous flux intensity – 50 % Parameter value in DTR1 register – 128 (0x80)
DTR2 » 0x00h Channel (0) DTR1 » 0x01h DTR2 » 0x01h Channel (1) DTR1 » 0x01h DTR2 » 0x02h Channel (2) DTR1 » 0x01h	Luminous flux intensity – 1 % Parameter value in DTR1 register – 1 (0x01)

FUNCTIONING

COMMAND SEQUENCE TO SET THE LIGHTING COLOUR

The sequence of commands must be sent by the MASTER controller one by one with an interval ${\sf >}150$ ms.

After saving all necessary data, carry out the following command 'type8_activate'. /*colour setting R*/

DTR1 » 0xff //enter PWM values for channel R DTR0 » 0x00 DTR2 » 0x00 //enter channel R address into the DTR2 register ENABLE DEVICE TYPE X » 0x08 //unlock X type device (for RGB type 8) QUERY APP EXT Cmd234 » 0x00//command set temporary primary N dimlevel' for channel 0 (R)

DTR1 * 0xff //enter PWM values for channel G DTR0 * 0x00 DTR2 * 0x01 DTR2 * 0x01 //enter channel G address into the DTR2 register ENABLE DEVICE TYPE X * 0x08 //unlock X type device (for RGB type 8) QUERY APP EXT Cmd234 * 0x01 //command'set temporary primary N dimlevel' for channel 1 (G) /*colour setting 8*/ DTR1 * 0xff DTR0 * 0x00 //enter PWM values for channel B	/*colour setting G*/	
DTR2 × 0x01 //enter channel G address into the DTR2 register ENABLE DEVICE TYPE X × 0x08 //unlock X type device (for RGB type 8) QUERY APP EXT Cmd234 × 0x01 //command set temporary primary N dimlevel' for channel 1 (G) /*colour setting B*/ /DTR1 × 0x0f //enter PWM values for channel B DTR2 × 0x02 //enter channel B address into the DTR2 register ENABLE DEVICE TYPE X × 0x08 //unlock X type device (for RGB type 8)		//enter PWM values for channel G
DTR2 register ENABLE DEVICE TYPE X > 0x08 //unlock X type device (for RGB type 8) QUERY APP EXT Cmd234 > 0x01 //command'set temporary primary N dimlevel'for channel 1 (G) /*colour setting B*/ DTR1 > 0xff //enter PWM values for channel B DTR0 > 0x00 DTR2 > 0x02 //enter channel B address into the DTR2 register ENABLE DEVICE TYPE X > 0x08 //unlock X type device (for RGB type 8)	DTR0 » 0x00	
ENABLE DEVICE TYPE X » 0x08 //unlock X type device (for RGB type 8) QUERY APP EXT Cmd234 » 0x01 //command'set temporary primary N dimlevel' for channel 1 (G) "colour setting B*/ DTR1 » 0xff //enter PWM values for channel B DTR0 » 0x00 //enter channel B address into the DTR2 register ENABLE DEVICE TYPE X » 0x08 //unlock X type device (for RGB type 8)	DTR2 » 0x01	//enter channel G address into the
QUERY APP EXT Cmd234 > 0x01 //command set temporary primary N dimlevel' for channel 1 (G) /*colour setting B*/ DTR1 = 0x6f //enter PWM values for channel B DTR0 > 0x00 //enter channel B address into the DTR2 register ENABLE DEVICE TYPE X > 0x08 //unlock X type device (for RGB type 8)		DTR2 register
/*colour setting B*/ DTR1 * 0xff //enter PWM values for channel B DTR0 * 0x00 DTR2 * 0x02 //enter channel B address into the DTR2 register ENABLE DEVICE TYPE X * 0x08 //unlock X type device (for RGB type 8)	ENABLE DEVICE TYPE X » 0x08	//unlock X type device (for RGB type 8)
DTR1 » 0xff //enter PWM values for channel B DTR0 » 0x00 //enter channel B address into the DTR2 register EVABLE DEVICE TYPE X » 0x08 //unlock X type device (for RGB type 8)	QUERY APP EXT Cmd234 » 0x01	//command'set temporary primary N dimlevel' for channel 1 (G)
DTR0 × 0x00 //enter channel B address into the DTR2 register ENABLE DEVICE TYPE X × 0x08 //unlock X type device (for RGB type 8)	/*colour setting B*/	
DTR2 » 0x02 //enter channel B address into the DTR2 register ENABLE DEVICE TYPE X » 0x08 //unlock X type device (for RGB type 8)	DTR1 » 0xff	//enter PWM values for channel B
ENABLE DEVICE TYPE X » 0x08 //unlock X type device (for RGB type 8)	DTR0 » 0x00	
	DTR2 » 0x02	//enter channel B address into the DTR2 register
QUERY APP EXT Cmd234 » 0x02//command 'set temporary primary N dimlevel' for channel 2 (ENABLE DEVICE TYPE X » 0x08	//unlock X type device (for RGB type 8)
	QUERY APP EXT Cmd234 » 0x02	//command 'set temporary primary N dimlevel' for channel 2 (

/*type8_activate (type 8 device activation)*/ ENABLE DEVICE TYPE X » 0x08 QUERY APP EXT Cmd2262

• Description of applied commands:

- DTR1 enter of parameter values into DRT1 register command 273
- DTR0 enter of parameter values into DRT0 register command 257
- DTR2 enter of parameter values into DRT0 register command 274
- ENABLE DEVICE TYPE X unlock X type device (X device number) 8 for RGB command 272
- QUERY APP EXT Cmd234 set temporary primary N dimlevel, channel N number saved in DTR2 register – command 234
- ENABLE DEVICE TYPE X unlock X type device (X device number) 8 for RGB command 272
- QUERY APP EXT Cmd226 activation command 226

DEFAULT SETTING

In case of SDL-11 it is not possible to set parameters as Fade Time, Fade Rate. A particular colour is changed with a time constant of 150 ms. The Power on Colour (colour after power supply is switched on) and System Failure Colour (during system failure) parameters have a default setting:

Power on Colour - green colour, brightness 100%

ADDRESSING

The addressing depends on the applied control module (DALI MASTER) the SDL-11 module cooperates with. Typically, the addresses are automatically assigned to modules following the sequence. It is possible to change the address and the name of the SDL-11 controller by means of the DALI MASTER controller. There is no possibility to set addresses manually by means of the SDL-11 device.

SAFETY DEVICE

The (OUT) output of SDL-11 is equipped with surge voltage and overload protections. In case of a small overload the temperature protection reacts in limiting the output power (lowering the PWM level to 5%). In case of high overload (160 – 190% Pn) or short circuit there is a complete output power supply cut off till the overload / short circuit is eliminated (recurring).

REMARKS

- The SDL-11 controller can be supplied with 10 V to 48V DC. The power supply voltage and the power supply output must be adjusted to the nominal supply voltage and power consumption of a lighting source connected to the SDL-11 output terminals.
- Use a two-wire cable of 0,5÷1,5 mm2 diameter to connect SDL-11 with DALI bus. The length of the cable should not exceed 300 m (permissible voltage drop on the bus 2 V).
- 3. In case of DALI MASTER controllers if there is no own bus power supply, it is required to apply an additional bus power supply (typical 16 V \pm 5%) connected to the DA line.
- 4. DALI bus lines are resistant to polarity inversion.
- In case of high loads and long distance connections between the power supply DALI module and DALI module and the load it is recommended to properly select the cross-section of cables. Permissible voltage drop is 0.5 V.
- 6. Maximum of 64 modules can be connected to a single DALI bus. It must be taken into account already during the design phase.
- 7. The SDL-11 controller is designed to be mounted in a Ø60 junction box. It is recommended to use deep junction boxes (62 mm) or pocket junction boxes. The controller can also be mounted in a lighting fitting due to its small dimensions. The device is designed to be mounted only indoor. In case of outdoor mounting, an additional casing is required with a minimum protection degree (IP54) and proper ventilation.